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diode, and Zo is the characteristic impedance of the

transmission line in which the diodes are mounted. The

average power, PAV, which this same modulator can

control, is given by

PAV = p&/2R.

in which pa is the maximum power each diode can dissi-

pate.

The maximum CW (continuous wave) power P~,~ any

180° phase modulator, using two diodes, can control

when mounted in the proper impedance configuration

according to Hines [14], is given by

P ma. = Eb[pd/32R.] 1i2

Two diodes having 60-volt breakdown voltage, 4-

ohm spreading resistance, and a one-half-watt dissi-

pation rating can control 4.5 watts peak power and

about 3 watts average power in a 50-ohm transmission

line, or about 4 watts CW power in a 60-ohm transmis-

sion line.

The power ratings of diodes switching in the two-path

modulator is the same as that of a single-pole, single-

throw switch given in Garver [13 ] and Hines [14].
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Circulator Synthesis
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Abstrac&A symmetrical three-port ring network composed of
reciprocal 2’ junctions and nonreciprocal phase shifters is analyzed
theoretically to determine conditions under which it exhibits perfect
circulation. All physically realizable T junctions are considered. It is

found that many such junctions, combined with appropriate phase

shifters specified by the theory, form perfect circulators. Among these
are many cases for which the internal wave amplitudes are small and
which require only very small amounts of nonreciprocal phase shift.

Circulators designed in accordance with this model may offer ap-
preciable advantages in insertion loss and bandwidth, as well as in

mechanical characteristics such as size and weight, and in the possi-
bility of adapting the design for special applications such as hlgh-
power capability, high-speed switching, etc. The nature of the model
and the method of calculation are summarized.

Manuscript received August 20, 1964; revised October 12, 1964.
This work was performed under the sponsorship of the Array Radars
Group of Lincoln Laboratory.

The author is with the Lincoln Laboratory, Massachusetts In-
stitute of Technology, Lexington, Mass. (operated with support from
the United States Au- Force), and the Worcester Polytechnic I nsti-
tute, Worcester, Mass.

T HERETICAL CONSIDERATION of the junc-

tion circulator has taken the form of group-theo-

retical treatment of the characteristic modes of

symmetrical junctions [1] and analysis of the spatial

configurations of the modes [2] under certain simplify-

ing assumptions regarding the structure of the junction.

Although a considerable advance in the quality of Y-

junction circulators has taken place during the same

period, it has not been possible to apply the results of

the theory to the design effort. The mechanical im-

provements, which include the shaping of the ferrite,

use of composite dielectric-ferrite elements, addition of

tuning elements at the ports, and, in strip-line versions,

shaping of the center conductor have increased the com-

plexity of the device to the point where simplified theo-

retical models can serve, at most, only as a qualitative

guide.

So Iong as circulator design remains essentially em-
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pirical in nature, there exists the possibility that alter-

native styles of design offering substantial advantages

in one or more specifications may be overlooked. As a

familiar example, we may consider the question: how

‘(efficiently” is the volume of ferrite used in present de-

vices? It is now well known that dielectric loading of the

junction by the ferrite plays an important pm-t in its

performance; designers have found it advantageous, in

fact, to replace a considerable fraction of the ferrite by

simpler dielectric materials. This naturally leads to spec-

ulation as to whether still further improvements might

be made if the ferrite and dielectric elements were

shaped and distributed in other ways.

As the term synthesis suggests, we attempt to deconl-

pose the circulator action into its elementary parts and

to specify a combination of these elements which, in a

sense, is optimum. If we choose as our optimum, for

example, a structure which requires a minimum volume

of ferrite, then the object is to characterize the non-

reciprocal action separately from the overall scattering

by the junction, and to synthesize the structure in such

a way that this action is minimized. There is not an

obvious reason to suppose in advance that this proced-

ure will lead to results which are of practical signifi-

cance. We shall show, however, that there do indeed

exist circulators which demand only extremely small

nonreciprocal effects. Our estimate of losses indicates

that there is no penalty in loss in these designs. Esti-

mates of bandwidth are difficult to make without intro-

ducing special assumptions regarding the dispersive

properties of the components, but there is no indication

in the model to be considered that a bandwidth penalty

is associated with these designs.

This paper considers a network model in which two

aspects of circulator performance are singled out as

fundamental: nonreciprocal differential phase shift, re-

garded as taking place in a distributed manner in the

region between the ports; and scattering at the ports,

regardecl as localized and reciprocal. The relevance of

this idealized model to existing circulator designs is

based on the observations, 1) that broadband circula-

tion seems to occur only when the electrical distance be-

tween ports is at least an appreciable fraction of a wave-

length; 2) that coupling to the ports, visualized as

localized scattering, must involve internal reflections as

a fundamental part of circulator action. No attempt is

made here, however, to establish a detailed connection

between the network model and a rigorous field theory

of junction circulators. Reduction of the complex junc-

tion circulator structure to a few disjoint components

must, of course, be regarded as a purely conceptual sim-

plification. On the other hand, the model may be re-

garded as a basis for the synthesis of novel types of cir-

culators. The results of the calculation indicate that

some important advantages in performance may be

inherent in the ring network to be described.

The ring-network representation of the three-port Y

circulator to be considered in this paper is illustrated in

Fig. 1, in which the elements L are nonreciprocal phase

shifters, and the elements T are symmetrical, reciprocal

T junctions. The idea of synthesizing a circulator by

joining three ferrite phase shifters has been advanced by

others [3], [4], but has not received much attention

because it has not appeared to offer any practical ad-

vantage over existing junction designs. In the present

paper, the network is examined more rigorously. !3pe-

cifically, the role of reflections at the T junctions in

determining the characteristics of the circulator is in-

corporated in a systematic way.

The most significant result of the theory is the dis-

covery that the ring network may exhibit perfect circu-

lation even when the amount of phase differential for

propagation around the ring in the two-clock senses is

very small. This result by itself is not unexpected: a

familiar circulator theorem asserts that any nonreci pro-

cal three-port junction can be made to circulate by the

addition of obstacles at the ports. It is found, however,

that the amplitudes of the standing waves excited within

the ring are surprisingly small in many cases. Some

examples are presented in Tables I and II. As will be

explained in the subsequent discussion and appendices,

the example of Table I requires nonreciprocal phase

shifters having a differential phase of only about 8° per

sector; yet, the amplitude of the standing waves in the

sectors adjoining the isolated port is only a little over

twice the amplitude of the incident signal. A measure of

merit of such a circulator may be formulated in terms

of the amount of nonreciprocal phase and the ampli-

tudes of the internal standing waves. This quantity

turns out to be quite insensitive to the amount of rlon-

reciprocal phase and, in fact, slightly lower (c(orrespcmd-

ing to lower insertion loss) in many of the low-phase

cases than in those of higher phase. This means that in

the designs prescribed by the theory for which the re-

quired differential phase is small, the saving in insertion

loss due to the requirement of only a small volume of

nonreciprocal medium (ferrite), more than cc)mpens~~ltes

for the penalty in insertion loss resulting from the rela-

tively large amplitudes of the interval waves.

The theory also yields a prescription for the frequency

dependence of the scattering at the T’s, such that circu-

lation may be made to persist over a band of any width

(with, of course, increasing complexity of structure as

the bandwidth specification is increased). Tlhus, if the

frequency dependence of the intrinsic reciprocal and

nonreciprocal phases of the ferrite-loaded junction is

known, the characteristics of the corresponding T j unc-

tions required for circulation over the entire band are

completely determined. For the types of differential

phase shifter characteristics commonly encountered in

waveguide and coaxial device practice, it is reasonable

to expect that the required T’s can be synthesized by

the application of known filter principles, resulting in a

rigorously flat broadband Y-j unction circulator, which

exhibits only incidental loss and which may be built

with extremely efficient use of ferrite. Depending on the
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TABLE I

THE FLING-NETWORK CIRCULATOR, CASE (27°; 631B)

Magnitude Phase, degrees

7 0.254 170.17 –
s 0.878 58.68
Td 0.820 14.55
Sd 0.405 135.00

e 1.00 58.12
6 1.00 3.97

— 62.09
:: — 54.15
&#J — 7.94

Fig. 1. The ring netw?rk. 2’ and L de~ote symmetrical T junctions E, o

and nonreciprocal phase shifters, respectively. E, 1.00 9<9
E3 o —

cl,
C23

c,l

D,I
DW
D,,
M

1.56
1.12
1.12
1.20
1.12
1.12
4.94

153.82
–79.71

27.38
22.2.5

–152.69
108.16

—

TABLE II

THE RING-NETWORK CIRCULATOR

Summary of ten cases, identified as (y; 631b) with -y= 4.50°, . . . ,45.00°. Listec~ with y are the nonreciprocal phase parameter arg ~,
the amplitude of the internal wave Cal, and the parameter of merit M= I CSI\2 arg & The magnitudes of the scattering coefficients of the T
junctions are also listed. Additional details of the case 7= 27° are given in Table 1,

Y 4.50 9.00 13.50 18.00 22.50 27.00 31.50 36.00 40.50 45.00

arg 6 0.137 0.539 1.18 2.02
p

2.98
5.92 2.98

3.97 4.88
2.02

5.56
1.5.5

5.91 5.85
1.28

4.79
1.12

4.80
1.02

4.81
0.962

4.84
0.948 0.971

4.88 4.94 5.03 5.15 5.31 5,52

1?’1 0.379 0.367 0 347 0.321 0.290
[s[ 0.922 0.917

0.254 0.217
0.910 0.900

0.183 0.156
0.889

0.146

If’d[ 0.994
0.878 0.869

0.976 0.947
0.861

0.910
0.855 0.854

Isai 0.078
0.866 pm;

0.155 0.227
0.777

0.294
0.740 0.716 0.707

0.354 . 0.446 0.476 0.494 0.500

application contemplated, this efficiency may be mani-

fested in some combination of compact size, low-loss,

high-peak and average-power capacity, high-speed re-

versal of the direction of circulation, etc.

The method of carrying out the network analysis is

as follows. The scattering coefficients of a symmetrical

T junction are expressed in terms of the characteristic

modes of the junction. The derivation follows the stand-

ard method [5] of the theory of group representations,

but the result is obtained with full generality not found

in standard treatments of the subject so as to represent

all physically realizable T junctions satisfying reci-

procity, energy conservation, and T symmetry. The scat-

tering of a matched, lossless, nonreciprocal phase

shifter (denoted by L in Fig. 1) is represented by a

reciprocal, or average, phase factor c = exp i(@+ + #_) /2,

and a nonreciprocal, or differential phase factm-

6 = exp i(q$+ – 4–)/2, where & and #– refer to clock-

wise and counterclockwise propagation, respectively.

The overall scattering by the network is then calculated

in terms of the parameters of the T’s and L’s. We obtain

the scattering coefficients El, E2, and ES denoting,

respectively, reflection, transmission, and leakage in

response tc) a unit signal incident on port 1 of the ring.

The conditions for perfect circulation are now im-

posed on the overall scattering coefficients El, E2, E3.

They are: input match, El= O; perfect isolation,

ES= O; lossless transmission, I Ez I =1. These conditions

are, of course, not mutually independent; on the con-

trary, the 1ast condition implies the other two. It turns

out to be convenient, however, to use the isolation con-

dition Et= O; solving this relation to find the reciprocal

phase factor e and the nonreciprocal phase factor i3, we

obtain a biquartic, algebraic equation for e and an

expression for ~ in terms of q both relations involving

the scattering coefficients of the T’s as parameters. The

problem now becomes one of computation.

A program was written for the MIT Lincoln Labora-

tory IBM 7094-C computer, in which values were as-

signed to the scattering coefficients of the T’s in sets

(cases) covering the range of physically realizable T’s in

a convenient number of steps. For each case, the prob-

lem was solved to find (a) the phase factors e and 8 if

they exist; (b) the amplitudes and phases of the internal

waves excited by a unit wave incident on port 1 of the

ring; (c) the phase of the transmitted wave E2; (d) the
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ST= rs s~

[1

srs
d

‘d ‘d ‘d

Fig. 3. Definition of the scattering matrix
of a symmetrical T junction.

Fig. 2. Internal and scattered waves in the ring network.

quantity M, defined subsequently, which provides an

estimate of the relative insertion loss. In all, about 700

cases were considered. Of these, well over half gave solu-

tions satisfying all requirements. As an example, the

case identified as (27°; 631b) is summarized in Table I.

The scattering coefficients Y, s, ?’d, and Sd of the ~s are

defined in Fig. 3, and the internal partial waves C and

D are defined in Fig. 2.

The table first lists the four scattering coefficients of

the T junctions. They specify what would ordinarily be

considered “poorl y“ matched junctions; for example, the

coefficient Yd specifying reflection at the accessible port

d (Fig. 3) has the magnitude 0.820 corresponding to a

VSWR (voltage standing-wave ratio) of 10/1 for the T

junction if its other ports were terminated in matched

loads. When combined to form the ring, these T’s, to-

gether with the corresponding L’s yield, of course, a per-

fectly matched circulator.

The next series of entries specifies the characteristics

of the phase shifters. The most significant number is the

parameter 6 which defines the differential phase A@

through the relation A@= 2 arg ~. In this example, A@

is only 7.94° (per sector). The parameter e specifying

the average phase per sector is of less significance, since

it can be ‘(traded” with the phases of the scattering

coefficients of the T’s without affecting 8 or the ampli-

tudes of the internal waves.

The overall scattering coefficients El, E2, and Ea are

listed next. They verify that perfect circulation indeed

does occur and specify, through the phase of Ez, the

overall phase of transmission through the ring.

The amplitudes of the C’s and D’s, the six internal

wave amplitudes (Fig. 2) are listed. The total standing-

wave amplitudes in the sectors 2–3 and 3–1 are the

sums C2?+DW and Cal+D,s, respectively. In this ex-

ample, they are equal to 2.24 times the amplitude of the

signal incident on port 1.

.1 measure of the merit of the network with respect to

its dissipative losses may be obtained from these data,

notwithstanding the fact that dissipative effects have

been neglected in the model. We make the plausible

assumption that the dominating contribution to loss is

magnetic in origin, and take the loss, as characterized

by the Poynting theorem, to be proportional to the

product of arg ~ (which measures the required length

of the differential phase shifters) times I CU 12 (which

measures the power level of the internal standing-wave

configuration). The value of this product M for the

present example is M= 4.94. The significance of this

value of M may be seen when the case presented in

Table I is compared with others in a series, as shown in

Table II.

Table II lists a series of ten cases, showing values of

arg 6 ranging from less than one degree to about 6°,

with a corresponding decrease in I Csl ] from about six

to about one. A number of details of the solutions have

been omitted in order to emphasize the most significant

features. The competition between arg 8 and I CU I

results in a value of the parameter M which remains

quite stable but shows a slight increase as arg t! in-

creases. This suggests that the very small-phase ring

circulator designs are actually of higher merit (lower

M) as far as magnetic losses are concerned, although

other sources of loss might overbalance this tendency

when the wave amplitudes become large.

In Appendices I and II, some further details are pre-

sented relating to the evaluation of the scattering

matrix of the T junction, and the solution of the ring

network problem.

APPENDIX I

THE SCATTERING MATRIX OF A

SYMMETRICAL T JUNCTION

The logic of the ring-circulator theory, whereby we

begin with an assumed scattering matrix ST for the

three T junctions and calculate the corresponding g re-

quirements on the nonreciprocal phase shifters, demands

that we have a completely general formulation of Sz,,

such that all physically realizable T junctions are repre-

sented. Since this is more general than that found in the

standard treatments of the problem, we summarize here

the derivation of ST.

The T junctions are characterized by T symmetry,

reciprocity, and losslessness. Reciprocity and energy
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conservation are represented, respectively, by sym-

metry and unitarity of the scattering matrix

ST = S*

STiST = I

where - denotes the transpose, ~ the Hermitean con-

jugate, and I the unit matrix. T symmetry is repre-

sented by invariance of ST with respect to a reflection

which interchanges the two symmetrical ports of the

junction. Let P denote the reflection operator repre-

sented by the matrix

[

010

P= loo 1
001 J

Then

or

P–lSTP = ST

sTf’ – PST = O

that is, ST commutes with P. Since the two matrices

commute, there exists a unitary transformation matrix

M which simultaneously diagonalizes ST and P. We

find M by carrying out the diagonalization of the reflec-

tion matrix P. The result is

–1 o 0

~?p~ .

[1

0+1 o

0 0+1

where

[

1 eibb cos y e@.sin ry

M=+ –1 e’bb cos T ei’$c sin 7y 1

1 0 v“Z ei~b sin y – v’~ ei~’ cos y 1

in which &, ~., and y are arbitrary real angles, The

dependence of M on 7 is a consequence of the degen-

eracy in the eigenvalues of P. We may assume, for the

diagonal representation of ST, the form

Saoo

[]

~tsT~ = O h O

00s.

where sG, sb, and s. are complex numbers of unit magni-

tude but otherwise arbitrary. Reversing this transfor-

mation, we obtain

where

r = ~(s. + sb cos2 y + s, sin2 y)

s = ~(–sa + sb cos2~ + scsin2y)

yd = sb sin2 ~ + s~ cosz ~

1
sd = ? (sb — s,) cos y sin y

42

All T junctions satisfying T symmetry, reciprocity, and

energy conservation are characterized by this set of scat-

tering coefficients. For computing purposes, we express

S. as exp (;ua), and sinlilarly for sb and SC, We assign

values of u. and i7b in the range OLu~, Gb < Zr; u, can

be held fixed at zero without loss of generality, We as-

sign values of T in the range 0< Ys7r/4.

APPENDIX II

THE RING CIRCULATOR PROBLBM

With the scattering coefficients of the T junctions

(Fig. 3) characterized as discussed in Appendix I, we

may analyze the scattering within the ring network

(Fig. 2) as follows: the scattered wave Cl,, for example,

is composed of contributions due to transmission of the

unit incident signal into the sector 1–2, the transmission

of the wave Ctl from sector 3–1 into sector 1–2, and the

reflection of DZI at the T junction and we get

Let

Using (2),

C12= Sd + .$Csle-i+” -+ rD21e–i+_ (1)

e-+i(d++o-) = ~ (2)

e–&(4+-4-) = ~ (3)

rt=R (4)

Se=s (5)

. ., (5) in (l), we have

cl, = sd + 6SC31 + 8*RD21 (6)

Figure 4 illustrates schematically the composition of

(6). Similarly, we may construct six relations connecting

the C’s and D’s. In matrix form they are

In

6*R – 1 6s -

– 1 8R 8*S

8S 8*R – 1

– 1 /iR 8“S

6S 8*R – 1

8*S –1 6R.

Dzl-

C12

D32

C23

A

C31.

.—

(7)

1-

(7), null elements have been omitted for clarity.

Expressions for the waves El, E,, and Ez scattered out

of the ring at the three ports may be formed in the same

way. We obtain
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$2= Sd+Sc31e-i’$++ rC)l@-i’#-

71
1.2.1

Fig.4. Illustrating the composition of the scattering
equations for the ring network.

El = Yd+eSd(6C31+6*Dzl)

Ez = a&3C12+8*D3J

E3 = esd(6czs+6*Dls)

Solving the system (7), we obtain for the C’s,

c,, = –; ( [R(R–s)(12–s’– l)+(l–R’)]

+O*!S’(R–S)]

E2=–&:{(R -s)3(R+s)-2R(R -5’)

+ ~*3S[l – (R – S)2] -t 1} (16)

Es e E2 under 6-6* (17)

We now impose a requirement for perfect circulation,

E8=0 I(18)

describing perfect isolation of port 3. For a 10SSIess

three-port junction, this condition implies either perfect

circulation, I EZ I = 1, or complete reflection at the input,

I Ell = 1. Ji’e discard the latter solutions. With E, given

by (17), (18) yields

o = (R – $3(R + s) – 2R(R – $

+ 63S[1 – (R – s)2] + 1 (19)

Using (4) and (5), we obtain from (19)

(a~e’ + azt’ + aO) + (aw3 + alc)ti3 = ‘O (20)

where

(8)
a4 = (r – s)3(r + s)’

(9) a3=— S(? — S)2

(lo) az = – 2r(r – s)

al=s

ao=l

(21)

Solving (20) for 8 in terms of E, we have

(11)
abe4 + a2ez + aO

~3=– (22)
a3e3 + ale

. .

cZ, = –~ {6*w[R-(R-s)YR+s)] –wR’-Rs-1)} (12)
With the requirements from (2) and (3) that

C,l= –~ {8*[(R–s)S(R+S)’

–R(2R2– RS–S2–1)]+82S2} (13)

where

A= (R2–S2)3–3R’(R2 –.S’2– 1)+(3’+ 6”3)S3– 1 (14)

The D’s may be found similarly by direct calculation,

but we note that they are related to the C’s in a simple

way as a consequence of the symmetry of the network,

as manifested in the form of the system (7). Under

interchange of 8 and 8*, that is, 6w8*, the C’s and D’s

are interchanged according to

INow, using the C’s and D’s in (8), (9), and (10), we

obtain the desired expressions for the scattered waves

EI = Y. – es: [2(R – S)[(R’ – S’)2 – R(2R +$]

+ (cV + ti*3)S’ + 2R] (15)

\al=16\=l (23)

we obtain from (22) the following biquartic equation

in e:

where

i48 = ~U* = a4aO*

#i6= i42*= a@2* + a2aO*– a3al*

1

(25)

A,= la412+ ]a212+ la012– \a3\2-- lull’

Equation (24) is the basis for the numerical solution of

the problem. To solve a single case we select a set of

values for the angles u., ~bj u., and 7 characterizing the

scattering matrix ST as discussed in Appendix 1, Using

these, we compute and record the four scattering caefi-

cients r, s, rij, and sd of the T junctions. In terms of the

coefficients r and s, we successively evaluate the coeffi-

cients ao, . 0 . , al, (21), and the coefficients A O, .0 “ , AS,

(25). We then solve (24) for c and use (22) to evaluate 8.

We test to ascertain that the magnitudes of c and 8 ful-

fill the requirement (23); if they do, the case yields a

physically realizable circulator. We proceed to evaluate

the C’s and D’s specified by (11), (12), and (13), and the
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Fig. 5. A map of the UL, u~ plane for y = 18.0°.

White: physically realizable ring circulators;
Black: no ring circulator exists;
Shaded: borderline cases, uncertain due to rounding-off errors.

overall transmission coefficient Ez, (9). Finally, the pa-

rameter of merit M is evaluated.

A map illustrating the range of soluble cases is shown

in Fig. 5. The particular range of cases shown there is

for the value T = 18.0° and u.= O, with U. and ub ranging

from 0° to 360° (UL and UM are the same as a. and Ub,

respectively). The white areas represent physically

realizable cases; the black, inadmissible cases. The

diagonally shaded regions are borderline cases which

are ambiguous because of rounding-off errors in the

computation. A series of eleven such maps, for ~ = 0°,

4..5°, . . . , 45.0°, show that well over half of the “pa-

rameter space, ” whose coordinates are G., ub, ~c, y, is

occupied by physically realizable cases.
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A 7~Gc/s Narrow#Band Waveguide Switch

Using p-i-n Junction Diodes

H. J. PEPPIATT, ~MBER, IEEE, A. V. McDANIEL,

J. B. LINKER, JR., SENIOR MEMBER, IEEE

JR., AND

Abstract—A narrow-band waveguide switch with power capabil-

ity in excess of 8 watts has been designed in WR137 waveguide.
j-i-n diodes are used in band elimination filter sections. The attenua-
tion in the reject band is greater than 80 dB over a 10 Me/s range,
and the passband loss is less than 0.5 dB.

INTRODUCTION

I

N BOTH the forward and reverse bias conditions,

the p-i-n diode approximates very closely a linear

circuit element. Hence, conventional circuit anal-

ysis and synthesis can be used in the design of compo-

nents using these diodes. The microwave switch, to be

described here, can be designed by the use of waveguide

band elimination filter synthesis.

Manuscript received June 15, 1964; revised October 19, 1964.
The authors are with the Communication Products Dept.,

General Electric Co., Lynchburg, Va.

BAND ELIMINATION SYNTHESIS

For completeness, a very brief resume of a band elimi-

nation synthesis is included. The low-pass prototype of

Fig. 1 can be synthesized to a given response by modern

network techniques. Extensive tables giving the ele-

ment values for a wide variety of responses are avail-

able.1 The frequency and impedance transformations

necessary to arrive at a quarter-wave coupled band

elimination filter are shown in Fig. 1. It is easily shown

that

1 Weinberg, L.,
McGraw-Hill 1962,

YP” = – j Yogp : (1)

Network Analysis and Synthesis, New York:
pp 604-631.


